Google
 
Web introtochemistry.blogspot.com

Sunday, September 10, 2006

CHAPTER XIII. ELECTROLYSIS.

The following experiment is to be performed only by the teacher,
but pupils should make drawings and explain.

63. Decomposition of Water.

Experiment 38.--Arrange "in series" two or more cells of a Bunsen
battery (Physics, page 164), [References are made in this book to
Gage's Introduction to Physical Science.] and attach the terminal
wires to an electrolytic apparatus (Fig. 19) filled with water
made slightly acid with H2SO4. Construct a diagram of the
apparatus, marking the Zn in the liquid +, since it is positive,
and the C, or other element, -. Mark the electrode attached to
the Zn -, and that attached to the C +; positive electricity at
one end of a body commonly implies negative at the other.
Opposites attract, while like electricities repel each other.
These analogies will aid the memory. At the + electrode is the -
element of H2O, and at the - electrode the + element. Note, page
43, whether H or O is positive with reference to the other, and
write the symbol for each at the proper electrode. Compare the
diagram with the apparatus, to verify your conclusion. Why does
gas collect twice as fast at one electrode as at the other? What
does this prove of the composition of water? When filled, test
the gases in each tube, for O and H, with a burning stick.
Electrical analysis is called electrolysis.

If a solution of NaCl be electrolyzed, which element will go to
the + pole? Which, if the salt were K2SO4? Explain these
reactions in the electrolysis of that salt. K2SO4 = K2 + S03 + O.
SO4 is unstable, and breaks up into SO3 and O. Both K and SO3
have great affinity for water. K2 + 2 H2O = 2 KOH + H2. S03 + H2O
= H2SO4.

The base KOH would be found at the - electrode, and the acid
H2SO4 at the + electrode.

The positive portion, K, uniting with H2O forms a base; the
negative part, S03, with H2O forms an acid. Of what does this
show a salt to be composed?

64. Conclusions.--These experiments show (1) that at the +
electrode there always appears the negative element, or radical,
of the compound, and at the - electrode the positive element; (2)
that these elements unite with those of water, to make, in the
former case, acids, in the latter, bases; (3) that acids and
bases differ as negative and positive elements differ, each being
united with O and H, and yet producing compounds of a directly
opposite character; (4) that salts are really compounded of acids
and bases. This explains why salts are usually inactive and
neutral in character, while acids and bases are active agents.
Thus we see why the most positive or the most negative elements
in general have the strongest affinities, while those
intermediate in the list are inactive, and have weak affinities;
why alloys of the metals are weak compounds; why a neutral
substance, like water, has such a weak affinity for the salts
which it holds in solution; and why an aqueous solution is
regarded as a mechanical mixture rather than a chemical compound.
In this view, the division line between chemistry and physics is
not a distinct one. These will be better understood after
studying the chapters on acids, bases and salts.