Google
 
Web introtochemistry.blogspot.com

Sunday, September 10, 2006

CHAPTER XXXVI. DIFFUSION AND CONDENSATION OF GASES.

178. Diffusion of Gases.--Oxygen is 16 times as heavy as H. If
the two gases were mixed, without combining, in a confined space,
it might be supposed that O would settle to the bottom and H rise
to the top. This would, in fact, take place at first, but only
for an instant, for all gases tend to diffuse or become
intimately mixed. The lighter the gas the more quickly it
diffuses.

179. Law of Diffusion of Gases.--The diffusibility of gases
varies inversely as the square roots of their vapor densities.
Compare the diffusibility of H with that of O. dif. H:dif. O::
sqrt(16): sqrt(1), or dif: H: dif. O:: 4: 1.

That is to say, if H and O be set free from separate receivers in
a room, the H will become intermingled with the atmosphere four
times as quickly as the O. Compare the diffusibility of O and N;
of Cl and H. Take the atomic weights of these, since they are the
same as the vapor densities. In case of a compound gas, half the
molecular weight must be taken for the vapor density; e.g. dif.
N20: dif. O.:: sqrt(16): sqrt(22).

180. Cause.--Diffusion is due to molecular motion; the lighter
the gas the more rapid the vibration of its molecules. Compare
the diffusibility of CO2 and that of Cl; of HCl and SO2; of HF
and I.

181. Liquefaction and Solidification of Gases.--Water boils at
100 degrees, under standard pressure, though evaporating at all
temperatures; it vaporizes at a lower point if the pressure be
less, as on a mountain, and at a higher temperature if the
pressure be greater, as at points below the sea level. Alcohol
boils at 78 degrees, standard pressure, and every liquid has a
point of temperature and pressure above which it must pass into
the gaseous state. Likewise every gas has a critical temperature
above which it cannot be liquefied at any pressure.

This condition was not recognized formerly, and before 1877, O,
H, N, C4, CO, NO, etc., had not been liquefied, though put under
a pressure of more than 2,000 atmospheres. They were called
permanent gases. In 1877 Cailletet and Pictet liquefied and
solidified these and others. The lowest temperature, about -225
degrees, was produced by suddenly releasing the pressure from
solid N to 4mm, which caused it rapidly to evaporate.
Evaporation, especially under diminished pressure, always lowers
the temperature by withdrawing heat.

These low degrees are indicated by a H thermometer, or if too low
for that, by a "thermo-electric couple" of copper and German
silver.

The pupil can easily liquefy SO, by passing it through a U-tube
which is surrounded by a mixture of ice and salt in a large
receiver. At the meeting of the American Association for the
Advancement of Science in 1887, a solid brick of CO2 was seen and
handled by the members, Liquid H is steel blue.

A few results obtained under a pressure of one atmosphere are:--
Boiling Points: C2H4--102 degrees; CH4--184 degrees; O--181
degrees; N --194 degrees; CO--190 degrees; NO--154 degrees; Air--
191 degrees.

Solidifying Points: Cl -102 degrees; HCl -115 degrees; Ether -129
degrees; Alcohol -130 degrees.